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The dynamics of a row of cylinders oscillating in a cross-flow is investigated using experiments
and analysis. Through experiments, a bifurcation diagram that classifies the nonlinear behavior
of the cylinder row is obtained. The experiments show that the stability of the cylinder row is
lost through a sub-critical Hopf bifurcation. As the number of oscillating cylinders is increased,
the experiments show that the critical flow velocity decreases. To analyze the motions of the
cylinder system, a linear model is studied using wave propagation theory. The motion-depen-
dent fluid forces acting on the cylinders are assumed to be linear functions of the relative motion
between adjacent cylinders only. A system identification technique is used to measure some of
the fluid force coefficients. The analysis of the model shows the presence of modal patterns for
the cylinder row that are analogous to standing helical waves in a string. The modes predicted
by the linear model are similar to the experimentally observed nonlinear modes. The co-
existence of more than one stable mode (limit cycle) for a range of flow velocities, not
predictable by the linear model, is a noteworthy nonlinear phenomenon observed in the
experiments of this study. © 1998 Academic Press

1. INTRODUCTION

IT 1s WELL KNOWN THAT an array of cylinders placed in a uniform cross-flow undergoes
oscillations beyond a certain threshold flow velocity. In various engineering systems, such
oscillations can lead to structural damage. For example, flow-excited oscillations can cause
damaging impacts and fatigue failure in heat exchanger systems. Thus, it is important to be
able to characterize the dynamics of such systems and predict the onset of potentially
destructive oscillatory behavior.

A number of experimental and analytical studies have been carried out to understand the
dynamics of cylinders in a uniform cross-flow (Roberts 1966; Connors 1970; Blevins 1977,
Chen 1978, 1983, 1987; Tanaka & Takahara 1980; Lever & Weaver 1982; Paidoussis et al.
1985; Paidoussis & Price 1988; Chen et al. 1993). Price (1995) provides an extensive review
of all the models of fluidelastic instability for cylinder arrays in cross-flow. This review
compares various models and experimental data while laying emphasis on the physics of the
different instability mechanisms. Paidoussis (1987) provides a review of the work
in fluidelastic instabilities due to internal flow, external axial flow, annular flow and
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cross-flow. A similar review on fluid-elastic instabilities due to cross-flow is provided by
Weaver & Fitzpatrick (1987). Chen (1989) gives an overview to resolve some of the
confusion and misunderstandings regarding the determination of critical flow velocity and
the effect of various parameters.

In many nonlinear system [e.g. Moon & Holmes (1979)], the spatial modes are close to
the linear modes even when the temporal behavior is far from linear. To explore this issue of
spatial modes was one of the goals of this study. Most of the work in this field to date has
focussed on identifying the instability mechanisms and determining the critical flow velocity
with less emphasis on fully understanding the modal patterns of the cylinder oscillations.
The specific aims of this study have been to use experiments to (i) characterize the global
dynamics of the cylinders in the cross-flow and (ii) develop a mechanical model to capture
the essential modal behavior of the cylinders. To describe the global behavior, we obtain (a)
a bifurcation diagram (cylinder oscillation amplitude versus flow velocity); (b) the critical
flow velocity; (c) the effect of the number of cylinders on critical flow velocity; and (d) the
modal patterns of the cylinder row in limit-cycle oscillations, for different flow regimes
(interval of flow velocities). We find that the stability of the cylinder row is lost through
a sub-critical Hopf bifurcation. These sub-critical Hopf bifurcations are dangerous in
practice because damaging large amplitude oscillations may be induced at much lower flow
velocities than those predicted by linear models.

To describe the modal patterns of the coupled n-cylinder periodic structure, we have
developed a linear wave propagation model. In addition, we have devised a novel technique
for measuring the fluid forces required by the model using system identification theory. This
model shows that the modal pattern of the coupled system of cylinders is analogous to the
propagation of helical waves along a string; such waves also arise in electro-mechanical
dynamics (Woodson & Melcher 1968). Moreover, the model predicts that for this system
where the instability is governed by fluid-stiffness forces, helical wave behavior is the only
possible modal pattern.

2. EXPERIMENTAL SET-UP

The wind tunnel in this study is a standard blower type, low turbulence air tunnel powered
by an AC motor. The air velocity in the test-section is controlled by adjusting the drive
motor speed by a variable frequency controller. The maximum turbulence level of the wind
tunnel is 0-23% and the boundary layer thickness is less than 5% of the width of the
test-section for the range of the flow velocities used in this study. The maximum air speed of
the wind tunnel is 14 m/s (without the cylinders) but for the experiments conducted in this
study with the cylinder row, the upstream flow velocity was kept below 8:5m/s. Muntean
(1995) provides more details on the wind-tunnel characteristics and performance tests.

The test-section is 915 mm long and is made of Plexiglass. Figure 1 shows two views of the
test-section and the row of cylinders. The pitch to diameter ratio (P/D) is 1-35. For tube
arrays with P/D greater than 1-5, it is known that vortex shedding plays a significant role
(Blevins 1977). In this study, the P/D ratio has been chosen so that vortex-induced
vibrations can be avoided. The flow profile upstream of the cylinder row, measured using
a pitot-static tube and a pressure transducer, was found to be uniform across the cylinder
row for various speeds of the drive motor (Thothadri 1996). The setup has reflection
symmetry about the y—z plane of the central cylinder under no-flow conditions.

Fixed cylinders at the ends of the cylinder row are solid 19 mm O.D. (outer diameter)
aluminum rods and are bolted, top and bottom, to the structure containing the cylinders,
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Figure 1. (a) Sketch of the test-section. (b) Top view of the cylinder row in the test-section. The air-flow between
the cylinders contributes to the coupling between them; no structural coupling exists. Only the central cylinder is
instrumented.

holding the entire structure in place. Each of the oscillating cylinders is made of a hollow
Plexiglass tube 256 mm long with 19 mm O.D. and 16 mm I.D. Each tube has mass per unit
length of 0-23 kg/m. The ends of each oscillating cylinder are sealed with caps. A 915 mm
long, 1:6 mm diameter steel rod passes through these caps and supports the tube. The top
end of this rod is connected to a ball-and-socket joint and the bottom end is connected to
a ball-and-socket roller joint that allows vertical motion of the lower end of the rod. Each
oscillating cylinder has two degrees of freedom, in-line and transverse to the flow. The
restoring forces for motions in the in-line and transverse directions are provided by the
extensions of the pre-tensioned springs. The contribution of the steel rod supporting the
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tube to the restoring force is small. The extension of the springs attached to the cylinders
can be increased or decreased to adjust the equilibrium position of the cylinders in
the in-line direction. This flexibility, in addition to permitting maintenance of cylinder
alignment, provides a way to compensate for the constant drag forces which are ignored in
the model.

The natural frequency of the cylinders in the in-line direction (f,) is 7-4 Hz (relative error
is 2%) and 6:8 Hz (relative error is 3%) in the transverse direction (f,). The transverse
natural frequency differsf from the in-line natural frequency by about 9% and this
difference prevents resonant coupling between them. The damping ratio in still air was
found to be close to § = 0-013 in both directions (relative error is 7-5%).

We obtained the response of the central cylinder by mounting two pairs of strain gauges
on the steel rod supporting the cylinder. The remaining cylinders were not instrumented.
The gauges were used in conjunction with Wheatstone-bridge circuits to obtain the bending
strains in the rod. The cylinder displacements were obtained by calibrating these bending
strains. Analog filtering of the signal was done using a 25 Hz low-pass Bessel filter. The
output was recorded and analyzed with a Nicolet Model 4094C and an HP 3562A Dynamic
Signal Analyzer. The recorded output was down-loaded into Sun Workstations, where all
the analysis was carried out using MATLAB. For system Identification, the displacement
signals were further filtered within MATLAB?’s Signal Processing Toolbox. We obtained the
modal patterns of the cylinder row using a video camera.

3. EXPERIMENTAL RESULTS

We present the principal experimental results in this section. Note that we use a nondimen-
sional form of the flow velocity called the reduced flow velocity, U, (= U/f, D), where U is
the mean gap flow velocity, f, is the natural frequency of the cylinder in the in-line (y)
direction and D is the diameter of the cylinder.

3.1. GLOBAL CHARACTERIZATION

The response of each cylinder is induced by the cross-flow and influenced by its interactions
with the other cylinders. In our experiments, we quantify only the response of the central
cylinder. We define amplitude as the maximum radial displacement of the central cylinder
from its equilibrium position. (Note that all of the seven cylinders can oscillate in any
direction in the x—y plane.)

The bifurcation diagram of Figure 2(a), shows the amplitude of central cylinder oscilla-
tions as a function of flow velocity. We found that the stability of the cylinder row is lost
through a sub-critical Hopf bifurcation. We define the critical flow velocity U, as the lowest
flow velocity for which the small-amplitude turbulent buffeting of the cylinder row grows,
after sufficient time, into large-amplitude limit-cycle oscillations. Previously, Paidoussis
et al. (1993) reported that a rotated array in a cross-flow loses stability through a super-
critical Hopf bifurcation, and Muntean (1995) showed that a single cylinder in a row of rigid

tAs the natural extension of the springs is in the in-line direction, the difference in the two natural frequencies
results from the nonlinear restoring force for motions in the transverse direction. An approximate analytical
estimate gives f, & 7-3Hz and f, ~ 0-85f, for transverse motions of the order of 25% of the equilibrium extension of
the spring.
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Figure 2. (a) Bifurcation diagram. The amplitude of the oscillations of the central cylinder in a row of seven
vibrating tubes is shown versus the reduced flow velocity, U,. A sub-critical Hopf bifurcation occurs as the reduced
flow velocity is increased past the critical value of approximately 115. This bifurcation diagram was obtained
experimentally. (b) The frequency of limit cycle oscillations (upper branch) is shown as a function of the reduced

flow velocity.

tubes became unstable through a sub-critical Hopf bifurcation. To obtain the amplitude of
the upper and lower branch oscillations, we sample the displacements of the central cylinder
in the in-line and transverse directions after the cylinder motions settle into a steady state.
To obtain the amplitude of the unstable limit cycle, the central cylinder was perturbed from
the small-amplitude buffeting oscillations (lower branch) by giving it a measured displace-
ment in the in-line direction. The smallest such perturbation (within + 1.6 mm) that resulted
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in a jump to a stable, large-amplitude limit cycle (upper branch) was recorded as the
amplitude of the unstable limit cycle. Figure 2(b) shows that the frequency of oscillations in
the upper branch does not vary significantly.

The method used to estimate the amplitude of the unstable limit cycle is appropriate if
the phase space has two dimensions. For the system studied here, however, the phase space
has 28 dimensions (four from each of the seven cylinders). Nevertheless, the existence
of an invariant, two-dimensional subspace of the 28-dimensional phase space, that attracts
all the trajectories near the equilibrium point asymptotically (i.e., a two-dimensional center
manifold) roughly justifies the use of this methodf. The center manifold theory [see e.g.,
Wiggins (1990)] is applicable to systems§ which, when linearized about an equilibrium
point, have some eigenvalues which have zero real part and others which have negative real
part. In the analysis of the model below, this is shown to be true, at the critical value of the
flow velocity.

3.2. CriticAL FLow VELoCITY VERSUS NUMBER OF CYLINDERS

The motion of each cylinder can be suppressed to study the effect of the number of
oscillating cylinders on the critical flow velocity. Figure 3 shows the critical reduced flow
velocity as a function of the number of oscillating cylinders. As the number of oscillating
cylinders increases, the critical flow velocity decreases. The value of the critical reduced gap
flow velocity for a single oscillating cylinder is greater than 230 (8.5m/s upstream).
Southworth & Zdravkovich (1975) briefly mention observing similar behavior in their
experimental studies. The analytical model developed in this study (see Section 6) predicts
the trend observed in the experiments. Blevins (1977) also shows this behavior through an
analytical model.

The decrease in the critical reduced gap flow velocity with the increase in the number of
oscillating cylinders suggests the role played by the coupling between the cylinders. This
coupling between the cylinders is not very significant at low flow velocities as no obvious
modal patterns were observed in the cylinder row in this turbulent buffeting regime. Modal
structure in the turbulent buffeting emerges gradually, however, as the flow velocity is
steadily increased close to the critical value. The emergence of structure indicates the
presence of coupling between the cylinders.

3.3. MopAL BEHAVIOR

For U, > 92, perturbations to the buffeting oscillations result in stable large-amplitude
modal oscillations of the cylinder row. The upper branch of Figure 2(a) shows the amplitude
of one such modal oscillation. Figure 4 is a schematic illustration of all the modes observed
through a video camera. We obtain the modes in Figure 4 by perturbing the turbulent
buffeting of the cylinders. The modes are stable for a long period of time. For a range of
reduced flow velocities, more than one stable limit cycle co-exist. We find these co-existing
limit cycles by perturbing different cylinders (i.e., different initial conditions). Below, we
classify the different modes of the cylinder row.

tHowever, it is most likely that the amplitude is underestimated by this method as only one cylinder can
practically be perturbed.
§The systems are written as a set of first-order differential equations (see also footnote in Section 5.2.2).
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Figure 3. The variation of the critical reduced flow velocity U.,, with the number of oscillating cylinders (N). For
the experimental curve, the value of U,, for a single oscillating cylinder could not be obtained, as it is beyond the
maximum flow velocity of the experimental setup (8.5 m/s upstream corresponding to a reduced flow velocity of
230). The difference in the U, between the experiments and the model is large for all except N = 7. This is because
the cross-coupling fluid forces which were not determined experimentally, were fitted for the U, observed in the

N =17 case (see Section 5).

(a) Mode A. This mode exists for U, < 104. The central cylinder oscillates only in the
transverse direction and the rest of the cylinders are in anti-symmetric motion about the
central cylinder, i.e., the cylinders to the right of the central cylinder whirl in the clockwise
direction, while those to the left whirl in the anti-clockwise direction. Mode A is similar to
the predominant mode observed by Connors (1970) and is similar to the least stable mode of
the linear model developed in this study (Figure 10).

(b) Mode B. This mode exists for U, > 96 and is the only mode present at U, ~ 115, the
critical reduced flow velocity. The absence of symmetry in this mode implies that at high
flow velocities, the coupled cylinder behavior loses symmetry. Mode B is close to a linear
combination of the modes of the analytical model of this study.

(c) Mode C. This mode exists for low reduced flow velocities, U, < 96. This is a nonsym-
metric, localized mode in which the cylinders to the left of the central cylinder perform large
amplitude whirling motions in the anti-clockwise direction while the cylinders to the right
perform relatively smaller amplitude oscillations. Mode C is not close to any of the modes
obtained by the analytical model.

(d) Mode D. This mode exists for low reduced flow velocities, U, < 96. This mode seemed
very close to a reflection of mode C about the y—z plane of the central cylinder, i.e., the
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Figure 4. Schematic illustration of the stable modes of limit cycle oscillations. For some range of the flow
velocity, more than one of these stable modes co-exist. These modes were observed through a video camera.

cylinders to the right of the central cylinder perform large amplitude whirling motions in the
clockwise direction. Mode D is not close to any of the modes obtained by the analytical
model.

Modes C and D were difficult to excite, as the set of initial conditions that excited
these modes were much smaller than those for modes A and B. In all four modes, a
phase difference in the positions of adjacent cylinders was observed. Although this phase
difference could not be experimentally quantified (as only the central cylinder was
instrumented), it was clearly observed through the video camera; [Thothadri (1996)
shows the sequential frames from the motion recorded by the video camera]. In Section 5,
a different representation of the modes shows them to be similar to helical waves on
a string. In the ranges of the flow velocity where several modes co-exist, the modes
are very sensitive to the perturbations. Moreover, on dismantling and re-assembling the
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setup, mode A could not be reproduced, and slight changes were observed in the rest of
the modes.

3.4. REMARKS ON THE EXPERIMENTAL RESULTS

The mode of oscillation of the cylinders in the upper branch of Figure 2(a) was similar to
mode BT of Figure 4. The presence of several co-existing modes suggests that a complete
bifurcation diagram would be more complicated than that shown in Figure 2(a). One very
likely scenario is the presence of secondary bifurcations in the system. Another, is the
presence of more Hopf bifurcations (sub-critical or super-critical) beyond the critical value
of U, ~ 115, each with its own bifurcation curves. A combination of the above scenarios is
also possible.

A better understanding of the co-existing limit cycles and the size of their basins of
attraction could prove useful in limiting the oscillation amplitude of the cylinder row and
in implementing a control algorithm for the cylinder row. For instance, the amplitudes
of cylinder oscillations in localized modes C and D are much smaller than those of
modes A and B; with appropriate nonlinear control we might be able to prevent the more
dangerous modes (A and B) from occurring. A good understanding of the fluid forces
might prove useful in designing a nonlinear model with which we could attempt at
changing the sub-critical nature of the bifurcation to the more robust super-critical
one.

Muntean (1995) studied the effects of the cylinder wake oscillations of the jets of fluid
flowing between the cylinders with a single oscillating cylinder and reported that different
patterns of coalescing jets affect the fluid damping forces on the cylinders. In this study, we
have not considered the effects of jet switching as the fluid elastic instability of a row of
cylinders in air is known to be due to fluid stiffness forces and not fluid damping forces
(Connors 1970; Chen 1983).

4. DESCRIPTION OF THE MODEL

The goal of this part of the study was to develop a linear model to understand the modal
patterns observed in the experiments and to predict the variation in the critical flow velocity
with the number of oscillating cylinders. We first list the various assumptions used to obtain
the model and briefly explain and justify the important ones. More details on these
assumptions can be found in Thothadri (1996). Then, we present and describe the equations
of motion.

4.1. MODEL ASSUMPTIONS

In the model, the following assumptions are made.

(i) The stiffness and damping characteristics of all the cylinders are identical. (The relative
errors in the stiffness constant and damping ratios were found experimentally to be less than
3% and 7-5%, respectively.)

T Figures 2 and 4 were obtained on different runs of the setup. Although the modes changed slightly in these two
runs, the co-existence of limit cycles for a range of flow velocities, did not change.
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(i1) Structural coupling of the in-line and transverse motions of any cylinder, and between
adjacent cylinders are negligible.

(i) Rocking modes are negligible. The frequency of the rocking modes are around 15 Hz
in still air. The rocking modes were not observed in the experiments.

(iv) The fluid coupling is short-ranged, i.e., we assume nearest-neighbor coupling.
Through a set of simple experiments, we observed that the propagation of perturbations is
negligibly small beyond the nearest cylinders.

(v) The velocity profile across the cylinder row is uniform (Thothadri 1996).

(vi) The effect of vortex shedding is negligible. Vortex-induced vibrations are resonant
phenomena characterized by large amplitude response over a narrow velocity range.
Hence, it seems that vortex shedding cannot explain the sub-critical nature of the bifurca-
tion. However, the effect of vortex shedding is still a debated issue. Chen et al. (1995)
report that the modal damping of a single oscillating cylinder can be affected by vortex
shedding.

(vii) Motion-independent fluid forces have little effect on the instability. Turbulent
excitation, constant drag forces and other flow field noises constitute the motion-indepen-
dent fluid forces. Although turbulent excitation can trigger fluid-elastic instability depend-
ing on its intensity, it does not explain the instability by itself. Constant drag forces are
compensated in the experimental setup by re-adjusting the equilibrium position of the
cylinders.

(viii) Fluid inertial forces (mostly due to added mass effect) are negligible for air, see for
example Muntean (1995) and Blevins (1977).

All of these assumptions are very general and typical in most studies of such systems.

4.2. GOVERNING EQUATIONS

With the above assumptions, the equations of motion of the nth cylinder, with respect to
a frame fixed at its equilibrium position are,

Xn C. 07](x, K, 07(x,
S e L el g
Yn 0 G 0 K, |
where the terms on the left-hand side are the structural inertia, damping and stiffness terms
per unit length of the cylinder, and f, on the right-hand side is a vector containing the fluid
forces per unit length on the nth cylinder in the x and y directions. The displacements of the
nth cylinder are denoted by x, and y,.

As the motion-independent fluid forces are ignored, f, = f,(x, X, X, U), where x is the
displacement vector whose components represent the x and y displacement of all the
cylinders, the overdot represents a derivative with respect to time, ¢, and U is the gap flow
velocity. The dependence on X drops out of the equations since we assume that the fluid
inertial terms are negligible. The nearest-neighbor assumption reduces the dependence of
f, to the motions of only the adjacent cylinders, the (n — 1)th and (n + 1)th cylinders.

As a result of the uniformity of the flow across the cylinder row and the periodicity of
the cylinders, any set of three cylinders has a symmetry along the flow direction about
the middle cylinder. The fluid force on the nth cylinder due to the relative motions of the
(n — 1th cylinder and the (n + 1)th cylinder (denoted by f* ' and ", respectively) are
related by 7' =f2"! for the direct coupling of the x and y directions and by
f2~! = — 27! for the cross-coupling between the x and y directions; see Thothadri (1996)
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for details. Using these symmetry conditions and linearizing the fluid forces about the
cylinder’s equilibrium position, we get

1 OC/ —OJ X _.)é_l O(, OJ X, — X +1
fn: - 5 DU ’ ’ .n .n + , ’ ‘n .n
2? <[—f B Hyn—yn-l} [r ﬁ]{yn—ym
a// _O_// x _x _ a// O-” x _x
+ U2 ! ! n n 1} + |: " ”:|{ n n+1}>' 2
P <|:_T ﬂ :|{yn_yn—1 T ﬁ Yn — Yn+1 ( )

The notation used is slightly different from the one used by Chen et al. (1993), but they
formulate the equations of motion in terms of the absolute cylinder displacements, as
opposed to the relative displacements used here. The single-primed quantities (o, o', f’, T')
are the fluid-damping coefficients, and the double-primed quantities («”, ¢”, f”, ©”') are the
fluid-stiffness coefficients. The coefficients o”, o’ couple the x-motions of adjacent cylinders
and ", f couple y-motions.T In the following we shall refer to these as the direct coupling
coefficients. The coefficients t”, ¢”, 7, ¢’ couple the x-motions of one cylinder to the
y-motions of the adjacent cylinders and shall be referred to as cross-coupling coefficients.
The quantities 3pDU and pU? have been factored out to keep the fluid force coefficients
nondimensional. The fluid force coefficients are independent of cylinder positions or
velocities (as we have already linearized) but are generally nonlinear functions of the gap
flow velocity, U.

4.3. REMARKS ON THE MODEL

As the motion-dependent fluid forces on any cylinder are dependent only on its motion
relative to its adjacent cylinders, any translation of the entire row of cylinders, upstream or
downstream, does not change the fluid forces. This translational invariance of the motion-
dependent fluid forces is inherent in our model. Most models in previous studies do not use
this invariance and hence require more unknown fluid force coefficients that must be
determined experimentally.

For a single cylinder oscillating in a row of rigid cylinders, this model predicts that the
equations of motion in the in-line and transverse directions are uncoupled, i.e., the cross-
coupling coefficients (z”, ¢”/, 7', ¢') drop out. So the single cylinder instability is completely
governed by the direct coupling coefficients. If the instability is due to the fluid stiffness
coefficients (", f”), the cylinder response is characterized by static divergence—mono-
tonous growth without oscillations (Paidoussis et al. (1985). Whereas, if the instability is due
to the fluid damping coefficients (o, '), the cylinder response is asymptotically growing
oscillations—known as single-mode flutter. The experimental measurements of the direct
coupling coefficients described below show that divergence cannot occur in a single-cylinder
system and that a single-cylinder instability is due to negative damping. To date, we have not
come across a study which has observed divergence in their experiments (in a row of
cylinders).f This important results serves to verify the model.

+Recall that, in contrast to much of the published literature, y in this paper is the in-flow direction — for
convenience in the analysis.
i For an array of cylinders, divergence has been observed by Paidoussis et al. (1989).
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4.4. FLuib ForceE COEFFICIENTS

Several previous studies have obtained the fluid forces on a cylinder row/array (Connors
1970; Tanaka & Takahara 1980; Price & Paidoussis 1984; Chen et al. 1993). In this study,
the direct coupling coefficients were measured by using the ARMA process and the
cross-coupling coefficients were determined through heuristic fits based on instability
mechanisms. The procedure used is summarized in the following.

4.4.1. Direct coupling coefficients

As was briefly mentioned in the previous section, we measure the direct coupling coefficients
from the equations of motion for a single cylinder oscillating in a row of rigid cylinders. For
this single cylinder system, t”, ¢”, 7/, ¢’ cancel out due to the anti-symmetry of the cross-
coupling fluid forces. Thus, in-line and transverse equations of motion become uncoupled.
The equation of motion of the cylinder in the transverse direction (x) can be written as

MX + [Cx + Cpd X + [Ki + Kp]x =0, 3)

Where C;, = pDU«’ and K ;. = — 2pU?a” are the fluid damping and stiffness forces in the
x-direction (transverse), respectively. A similar equation with " and f” can be written for
the y-direction.

We measure the unknown fluid coefficients in equation (3) by analysing the response of
the system to turbulent excitation input. The response of the system to such an input would
correspond to the small amplitude buffeting oscillations (lower branch) of Figure 2(a). The
turbulent excitation is a predominantly stochastic, motion-independent forcing which is
seemingly the result of turbulent pressure fluctuations in the flow field and other flow noise
(Blevins 1977; Muntean 1995; Thothadri 1996). We assume that the turbulent excitation
forces are normally distributed, disturbance input of stochastic nature with zero mean and
some variance, i.e., white noise. Although this assumption could not be verified directly,
comparisons of the white noise input response of equation (3) with the measured turbulent
buffeting response of the cylinder showed this assumption to be reasonable (Thothadri
1996). Equation (3) with the white noise input, u(t) , is written as

M3 + [C, + pDUL]X + [K, — 2pU%"]x = u(t). 4)

In equation (4), u(t) is known (since it is white noise) and the displacement x can be
obtained experimentally by measuring the response of turbulent buffeting. In order to
calculate the unknown coefficients, o/, o/, we use ARMA (auto-regressive moving average)
process of system identification theory; see Ljung (1987). In order to apply th